Informatik 3 – Übung 12 – Georg Kuschk

12.1)

Ist der Masterschalter aktiviert (Signal 1), dann ist der Alarm für das Haus aktiviert. Ist ein Etagenschalter deaktiviert (Signal 1), dann ist der Alarm für diese Etage deaktiviert.

Die Literale werden wiefolgt bezeichnet :

 X_1 : Masterschalter

 x_2 : Etagenschalter der 1. Etage

 x_3 : Bewegungsmelder der 1. Etage

 X_4 : Etagenschalter der 2. Etage

 x_5 : Bewegungsmelder der 2. Etage

 x_6 : Etagenschalter der 3. Etage

 X_7 : Bewegungsmelder der 3. Etage

Die Funktion $f: B^7 \to B$ für den Alarmanlagen-Ausgang lautet somit in DNF :

```
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) = 1 \iff (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) \in \\ \{(1000001), (1000100), (1000101), (1000110), (1000111), (1001001), (1001101), (1010100), \\ (1010001), (1010010), (1010011), (1010100), (1010101), (1010110), (1010111), (1011110), \\ (1011001), (1011010), (1011011), (1011100), (10111101), (1011110), (1011111), (1111001), \\ (1100100), (1100101), (1100110), (1100111), (1101001), (1101101), (1111101), (1111101), \\ (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (11111101), (11111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (1111101), (11111101), (11111101), (11111101), (11111101), (11111101), (11111101), (11111101)
```

Mit Hilfe des Quine/McCluskey-Verfahrens die Primimplikanten berechnen:

```
L_0^{\{x_1,x_2,x_3,x_4,x_5,x_6,x_7\}}
1000001
1000100
1010000
1000101
1000110
1001001
1010001
1010010
1010100
1011000
1100001
1100100
1000111
1001101
1010011
1010101
1010110
1011001
1011010
1011100
1100101
1100110
1101001
1010111
1011011
1011101
1011110
1100111
1101101
1111001
1011111
1111101
```

Für $L_{\rm l}$ ergeben sich folgende Implikanten :

$L_1^{\{x_1,x_3,x_4,x_5,x_6,x_7\}}$	$L_1^{\{x_1,x_2,x_4,x_5,x_6,x_7\}}$	$L_1^{\{x_1,x_2,x_3,x_5,x_6,x_7\}}$	$L_1^{\{x_1,x_2,x_3,x_4,x_6,x_7\}}$	$L_1^{\{x_1,x_2,x_3,x_4,x_5,x_7\}}$	$L_1^{\{x_1,x_2,x_3,x_4,x_5,x_6\}}$
1-00001	10-0001	100-001	1000-01	10001-0	100010-
<u>1-00100</u>	<u>10-0100</u>	<u>101-000</u>	<u>1010-00</u>	<u>10100-0</u>	<u>101000-</u>
1-00101	10-0101	100-101	1001-01	10001-1	100011-
1-00110	10-0110	101-001	1010-01	10100-1	101001-
<u>1-01001</u>	<u>10-1001</u>	101-010	1010-10	10101-0	101010-
1-00111	10-0111	101-100	1011-00	10110-0	101100-
1-01101	10-1101	110-001	<u>1100-01</u>	<u>11001-0</u>	<u>110010-</u>
<u>1-11001</u>	<u>11-1001</u>	101-011	1010-11	10101-1	101011-
1-11101	11-1101	101-101	1011-01	10110-1	101101-
		101-110	1011-10	10111-0	101110-
		<u>110-101</u>	<u>1101-01</u>	<u>11001-1</u>	<u>110011-</u>
		101-111	1011-11	10111-1	101111-
			1111-01		

Da alle Implikanten aus L_0 durch Implikanten aus L_1 überdeckt werden, gibt es in L_0 somit keine Primimplikanten.

$$P_0 = \emptyset$$

Für L_2 ergeben sich folgende Implikanten :

 $\binom{6}{4}$ = 15 Möglichkeiten eine 4-elementige Teilmenge aus einer 6-elementigen Menge auszuwählen :

(Da X_1 =Masterschalter immer auf 1 ist)

$L_2^{\{x_1,x_4,x_5,x_6,x_7\}}$	$L_2^{\{x_1,x_3,x_5,x_6,x_7\}}$	$L_2^{\{x_1,x_3,x_4,x_6,x_7\}}$	$L_2^{\{x_1,x_3,x_4,x_5,x_7\}}$	$L_2^{\{x_1,x_3,x_4,x_5,x_6\}}$	$L_2^{\{x_1,x_2,x_5,x_6,x_7\}}$	$L_2^{\{x_1,x_2,x_4,x_6,x_7\}}$	$L_2^{\{x_1,x_2,x_4,x_5,x_7\}}$
<u>11001</u> 11101	<u>1-0-001</u> 1-0-101	<u>1-00-01</u> <u>1-01-01</u>	<u>1-001-0</u> 1-001-1	<u>1-0010-</u> 1-0011-	<u>10001</u> 10101	<u>10-0-01</u> <u>10-1-01</u>	<u>10-01-0</u> 10-01-1
1 1101	1 0 101	1-11-01	1 001 1	1 0011	10 101	11-1-01	10 01 1

$L_2^{\{x_1,x_2,x_4,x_5,x_6\}}$	$L_2^{\{x_1,x_2,x_3,x_6,x_7\}}$	$L_2^{\{x_1,x_2,x_3,x_5,x_7\}}$	$L_2^{\{x_1,x_2,x_3,x_5,x_6\}}$	$L_2^{\{x_1,x_2,x_3,x_4,x_7\}}$	$L_2^{\{x_1,x_2,x_3,x_4,x_6\}}$	$L_2^{\{x_1,x_2,x_3,x_4,x_5\}}$
<u>10-010-</u>	10001	<u>101-0-0</u>	<u>101-00-</u>	<u>10100</u>	<u>1010-0-</u>	10001
10-011-	<u>10100</u>	101-0-1	101-01-	10101	1010-1-	<u>10100</u>
	10101	<u>101-1-0</u>	<u>101-10-</u>	<u>10110</u>	<u>1011-0-</u>	10101
	10110	101-1-1	101-11-	10111	1011-1-	10110
	<u>11001</u>					<u>11001</u>
	10111					10111

 \Rightarrow Alle Implikanten aus L_1 werden durch Implikanten aus L_2 überdeckt, d.h. auch in L_1 sind keine Primimplikanten vorhanden.

$$P_1 = \emptyset$$

Für L_3 ergeben sich folgende Implikanten :

$L_3^{\{x_1,x_4,x_6,x_7\}}$	$L_3^{\{x_1,x_3,x_6,x_7\}}$	$L_3^{\{x_1,x_3,x_4,x_5\}}$	$L_3^{\{x_1,x_2,x_6,x_7\}}$	$L_3^{\{x_1,x_2,x_4,x_5\}}$	$L_3^{\{x_1,x_2,x_3,x_7\}}$	$L_3^{\{x_1,x_2,x_3,x_6\}}$	$L_3^{\{x_1,x_2,x_3,x_5\}}$	$L_3^{\{x_1,x_2,x_3,x_4\}}$
11-01	1-001	1-001	1001	10-01	<u>1010</u> 1011	<u>1010-</u> 1011-	<u>101-0</u> 101-1	<u>1010</u> 1011

 \Rightarrow Alle Implikanten aus L_2 werden durch Implikanten aus L_3 überdeckt, d.h. auch in L_2 sind keine Primimplikanten vorhanden.

$$P_2 = \emptyset$$

In L_4 ist lediglich ein Implikant enthalten :

$$L_4^{\{x_1,x_2,x_3\}}$$

Für die restlichen 2-elementigen Mengen gilt : $L_4^{U_i} = \varnothing$.

 \Rightarrow Folgende Implikanten aus $L_{\!\scriptscriptstyle 3}\,$ werden nicht durch den Implikanten aus $L_{\!\scriptscriptstyle 4}\,$ überdeckt :

$$\{1--1-01, 1-0--01, 1-001--, 10---01, 10-01--\}$$

=
$$\{x_1x_4x_6'x_7, x_1x_3'x_6'x_7, x_1x_3'x_4'x_5, x_1x_2'x_6'x_7, x_1x_2'x_4'x_5\} = P_3$$

$$\Rightarrow P_4 = \{101 - ...\} = \{x_1 x_2 ' x_3\}$$

Die Menge P der berechneten Primimplikanten ist somit

$$P = P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4$$

= \{x_1 x_4 x_6' x_7, x_1 x_3' x_6' x_7, x_1 x_3' x_4' x_5, x_1 x_2' x_6' x_7, x_1 x_2' x_4' x_5, x_1 x_2' x_3\}

Bestimmung der wesentlichen Primimplikanten mittels der Matrix-Überdeckung : (aufgrund der Größe zweigeteilt)

	1000001	1000100	1010000	1000101	1000110	1001001	1010001	1010010	1010100	1011000	1100001	1100100	1000111	1001101	1010011	1010101
1.) 11-01						1								1		
2.) 1-001	1			1		1					1			1		
3.) 1-001		1		1	1							1	1			
4.) 1001	1			1		1	1							1		1
5.) 10-01		1		1	1				1				1			1
6.) 101			1				1	1	1	1					1	1

	1010110	1011001	1011010	1011100	1100101	1100110	1101001	1010111	1011011	1011101	1011110	1100111	1101101	1111001	1011111	1111101
11-01		1								1			1	1		1
1-001					1		1						1			
1-001					1	1						1				
1001		1								1						
10-01	1							1								
101	1	1	1	1				1	1	1	1				1	

Die rot eingefärbten Primimplikanten (1,2,3,6) sind wesentlich.

Der 4. Primimplikant wird vom 2. und 6. gemeinsam überdeckt.

Der 5. Primimplikant wird vom 3. und 6. gemeinsam überdeckt.

⇒ Die wesentlichen Primimplikanten

$$\{\,x_1^{}x_4^{}x_6^{}\,'x_7^{}$$
 , $\,x_1^{}x_3^{}\,'x_6^{}\,'x_7^{}$, $\,x_1^{}x_3^{}\,'x_4^{}\,'x_5^{}$, $\,x_1^{}x_2^{}\,'x_3^{}\}$ reichen aus, um

die Funktion f zu beschreiben.

Die Gesamtkosten sind hierbei minimal.

D.h., für das Minimalpolynom gilt :

$$\Rightarrow f(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = x_1 x_4 x_6' x_7 + x_1 x_3' x_6' x_7 + x_1 x_3' x_4' x_5 + x_1 x_2' x_3$$

12.2 a)

in KNF gegeben : $(x'+y'+z) \cdot (y'+z') \cdot (x+z')$

in DNF umformen:

$$= (x'y'+x'z'+y'+y'z'+y'z+zz') \cdot (x+z')$$

$$= x'y'z'+x'z'+xy'+y'z'+xy'z'+xy'z \qquad -xy'z'+xy'z = xy' \rightarrow$$

$$= x'y'z'+x'z'+xy'+y'z'$$
 - zu vollständigen Monomen erweitern \rightarrow

$$= x' y' z' + x' yz' + x' y' z' + xy' z + xy' z' + xy' z' + x' y' z'$$

$$= x' y' z' + x' yz' + xy' z + xy' z'$$
: DNF

12.2 b)

gegeben: xyz + x'z' + xy'z'

in DNF: xyz + x'yz' + x'y'z' + xy'z'

in KNF umformen:

$$= (xyz + xy'z') + x'z' + (y'z')$$
 - da y'z' schon in xy'z' und x'z' enthalten ist

$$= (xyz + xy'z' + xyy' + xzz') + x'z' + (y'z' + yy'z' + yzz' + z'zz')$$

$$= (xy + xz')(y'+z) + x'z'+ (yz'+z'z')(y'+z)$$

$$= xx'+x(y+z')(y'+z) + x'z'+ z'(y+z')(y'+z)$$

$$=(x+z')(x'+(y+z')(y'+z))$$

$$= (x + z') \cdot (x' + y + z') \cdot (x' + y' + z) : KNF$$

12.3)

Da diese Aufgabe quasi identisch mit Aufgabe 10.1 ist, kann ich nur eben diese wiederholen :

Wie in Aufgabe 10.1 a) bereits gezeigt wurde, ist die Menge der Primimplikanten von S_k^n :

$$\{x_{i_1}...x_{i_k} \ : \ x_{i_j} \in \{x_1,...,x_n\} \quad , \quad x_{i_r} \neq x_{i_s} \Longleftrightarrow r \neq s\}$$

Hieraus folgt sofort, dass jedes Monom $x_{i_1}...x_{i_k}$ mit k verschiedenen, positiven Literalen in der Menge der Primimplikanten enthalten ist.

Desweiteren wurde in Aufgabe 10.1 c) gezeigt, dass das Minimalpolynom für diese Funktion eindeutig ist (da die Funktion monoton ist).

D.h., alle Primimplikanten sind wesentlich.